

Road Scholar & Geologic Mapping

Division B/C

Georgia Tech Event Workshop Series
2024-25

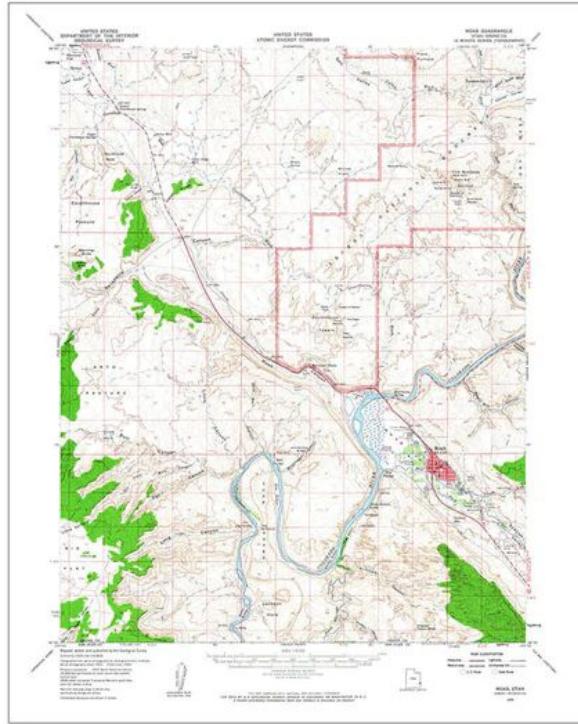
01

02

03

04

05


RULES SHEET

DIFFICULT TOPICS

COMMON QUESTIONS

TIPS FROM A VETERAN

OTHER FREE RESOURCES

A quadrangle topographic map published by the United States Geological Survey (USGS)

The Rules Sheet: Road Scholar vs. GeoMapping

- Road Scholar focuses on analysis of:
 - Topographic Maps
 - Highway Maps
 - Satellite Maps
- In addition to topographic maps, Geologic Mapping covers:
 - Geologic Structures
 - Geologic maps
 - Lithology (study of rocks)
- Both Road Scholar and Geologic Mapping allow students to bring a **binder of notes/information “from any source”** and **Class II calculators** (non-programmable, non-graphing)
- Topic list is vague → research as much as possible within the scope of each bullet point

 ROAD SCHOLAR B
See General Rules, Eye Protection & other Policies on www.asonline.org as they apply to every event.

DESCRIPTION: Participants will interpret questions based on one or more state highway maps, USGS topographic maps (or portions thereof) map, Internet-generated maps, a road atlas, or satellite/aerial images.

TEAM OF UP TO: 2 **CALCULATOR:** Class II **APPROXIMATE TIME:** 50 minutes

EVENT PARAMETERS:

- a. Participants bring two stand-alone non-programmable, non-graphing calculators (Class II), protractors, rulers, other measuring devices, USGS Map Symbol Sheets (pre- and post-2010), hand lenses (magnifying glass), hard copy maps, and a road atlas.
- b. **Equipment:** Colored pencils consistent with the colors utilized on USGS topographic maps. The equipment and reference materials may be in a container.
- c. **Materials:** Participants may bring any reference materials, maps, or images. Participants may NOT write on the maps. If a student-generated map is included, a one-mile-square PLSS section will be printed on the map. Event specific maps and images will be provided. Event specific maps will check for accuracy on scales on reproduced maps or images prior to competition.
- d. **THE COMPETITION:** The satellite images, highway, and roadway maps may be front or back of the event card. The event may be presented as a map, a map and a written problem with all the visible light spectrum.

Topics/Concepts Assessed:

a. Topographic Map	b. Highlight Map
i. Map features	Topographic map topics may also be present on highway maps
ii. Map scale information: location, series-scale/index/legend	i. Map legend/tables/index
iii. Map symbols	ii. Map grid/contour symbols
iv. Differences between features (English & Metric)	iii. Distance between features
v. Elevation of features and symbols	iv. Geographical coordinates in decimal degrees
vi. Water, Stream name, direction and flood impact areas	v. Geographic coordinates in decimal degrees
vii. Coordinate systems of map features with (1) Public Land Survey System (PLSS) (2) StatePlane (3) UTM (4) National Grid (NGA)	vi. USGS topographic map symbols
ix. Latitude/longitude in degrees, minutes, and seconds	ii. Distances
ix. Azimuth and bearing	iii. Azimuth and bearings
xi. Magnetic declination	iv. Public Land Survey System (PLSS) coordinates and boundaries consistent with USGS Maps
xii. Map scale (control stations and spot elevations)	d. Satellite/aerial Map
xiii. Map scale (control stations and spot elevations)	i. Feature identification
xiv. Map scale (control stations and spot elevations)	ii. Map scale and scale bar
xv. Topographic map profiles	iii. Photo-time scale identification
xvi. Map scale (100 feet)	iv. Internet map symbols
xvii. Map scale (1000 feet)	iv. Map scale and scale bar
xviii. Map scale (10000 feet)	v. Inferences based on satellite photos

4. SCORING:

- a. High accuracy. Values of questions may be weighed.
- b. Points will be broken by the accuracy and quality of answers to pre-selected questions.

Recommended Resources: The Science Olympiad Store (store.asonline.org) carries a variety of resources to purchase; other resources are on the Event Pages at asonline.org as they apply to every event.

 GEODESY & GEOGRAPHY C
See General Rules, Eye Protection & other Policies on www.asonline.org as they apply to every event.

DESCRIPTION: Teams will demonstrate understanding in the construction and use of topographic maps, geologic maps, and cross sections, and their use in forming interpretations regarding subsurface structures and past depositional environments on Earth and other planetary bodies.

TEAM OF UP TO: 2 **CALCULATOR:** Class II **APPROXIMATE TIME:** 50 minutes

EVENT PARAMETERS:

- a. Each team may bring one three-ring binder of any size containing information in any form and from any source. Sheet protectors, laminate, tabs and labels are permitted. If the event features a rotation through a series of stations, the binder may be exchanged with samples, specimens, or displays, no material may be removed from the binder throughout the event.
- b. Each team may bring two protractors, and two rulers, and stand-alone non-programmable, non-graphing calculators (Class II).

3. THE COMPETITION:

Participants will be given one or more tasks presented as an exam and/or timed station. The participants will be expected to use process skills (e.g., communicating, classifying, inferring, measuring, observing, predicting, and using number relationships) to answer questions on the following topics:

- a. **Geologic Structures:**
 - i. Surface and subsurface structural elements of macroscopic and regional scale
 - ii. Depositional environments and erosional patterns of different lithologies and structural elements
 - iii. Relationships of structural elements (e.g., dip and dip direction)
- b. **Rock Formations:**
 - i. Methods and environments of formation (e.g., magmatic/igneous, metamorphic, sedimentary, and extrusive/intrusive)
 - ii. Relationships between texture (e.g., intrusive/extrusive), composition (e.g., mafic/felsic), and mineralogy
 - iii. Relationship between temperature, pressure, and depth of types of metamorphism and metamorphic facies
 - iv. Connections between physical and chemical properties on smaller scales of rock formation and how they inform properties on macroscopic/regional scales
- c. **Interpreting Geologic Maps:**
 - i. Application of stratigraphic principles
 - ii. Reading and interpreting geological maps (e.g., structural, topographic, and/or thematic)
 - iii. Projections of mapped features (e.g., cross-sections, stereonet, map projections)
 - iv. Analysis of geological structures (e.g., folds, faults, joints, unconformities, and/or angles)
- d. **Sedimentary Structures and their Implications:**
 - i. Sedimentary structures and their implications about depositional processes and environments (e.g., plane bed, cross bed, and current bedded)
 - ii. Changes in depositional environments over time and space (e.g., transgressions, regressions, uplift)
 - iii. Depositional environments and processes (e.g., fluvial, lacustrine, glacial, and/or coastal)
 - iv. Application of stratigraphic principles
 - v. Groundwater quality and contamination
 - vi. Sustainable land management
 - vi. Responsible economic land management

4. SCORING:

- a. The team that scores the highest will be the winner. Points will be given for the quality and accuracy of responses, the quality of supporting reasoning, and the use of proper scientific methods of responses. Ties will be broken by the accuracy and quality of answers to pre-selected questions and/or sections.

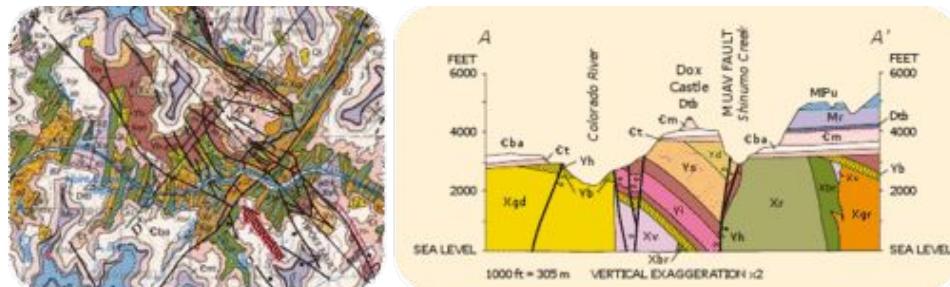
Recommended Resources: The Science Olympiad Store (store.asonline.org) carries a variety of resources to purchase; other resources are on the Event Pages at asonline.org.

The Rules Sheet: Road Scholar

Topics Covered: the rules document provides a very well-organized table of this information

- Watersheds are new this year

Materials Allowed:


- *Magnifying glasses* – topographic maps are large and individual features are small
- *Protractors/Rulers/Other Measuring Devices* - important for calculation questions!!!
- *Colored Pencils* - needed for questions that ask you to create your own map

<p>a. Topographic Map</p> <ul style="list-style-type: none">i. Map featuresii. Map marginal information: location/series/scale/index/legendiii. Map symbolsiv. Distances between features (English & Metric)v. Contoursvi. Elevation of features and symbolsvii. Watersheds: Stream flow direction and flood impact areasviii. Coordinate systems of map features with correct formats<ul style="list-style-type: none">(1) Public Land Survey System (PLSS)(2) Sector Reference System(3) Latitude/Longitude in degrees, minutes, & seconds(4) State/National only: Universal Transverse Mercator (UTM)ix. Azimuths and bearingx. Magnetic declinationxi. Survey control marks (control stations and spot elevations)xii. Graticule tick marks/graticule intersectionsxiii. Slope (feet per 100 feet)xiv. Topographic map profilesxv. State/National only: Stream gradient (feet per 1000 feet)		<p>b. Highway Map <i>Topographic map topics may also be present on highway maps.</i></p> <ul style="list-style-type: none">i. Map legend/tables/indexii. Map features/symbolsiii. Map grid systemiv. Distance between featuresv. City/Regional insetsvi. Geographic coordinates in decimal degrees <p>c. Student-Created Map</p> <ul style="list-style-type: none">i. Map scalesii. USGS topographic map symbolsiii. Distancesiv. Azimuths and bearingsv. Public Land Survey Systemvi. State/National only: Colors consistent with USGS Maps <p>d. Satellite Photos/Internet Maps</p> <ul style="list-style-type: none">i. Feature identificationii. Distances and scalesiii. Photo time-of-day identificationiv. Internet map symbolsv. Road travel between pointsvi. Inferences based on satellite photos
---	--	---

The Rules Sheet: Geologic Mapping

Topics Covered (*this is one of the most comprehensive SciOly events, so your finalized notes binder should be thick*):

- Structural Geology Processes and Elements – mechanisms of deposition, deformation, erosion and the geologic features that result from these phenomena
- Rocks – the rock cycle, types of rocks, characteristics of rocks
- Analyzing Geologic Data - topographic/geologic maps, map projections, **calculations**
- Applications of Geologic Mapping - why do we do it?
 - Natural disaster preparedness
 - Water quality
 - Effective land management

Topographic vs. Geologic Map

DIFFICULT TOPICS

Topic 1: Topographic Maps

- Comprises at least 50% of any Road Scholar exam
 - You will most likely be given a quadrangle and will be asked a series of questions about it, sometimes in a story format, to test your ability to read the map
- **THE MOST HELPFUL ROAD SCHOLAR RESOURCE:**
A Coach's Handbook for Road Scholar
 - Will walk you through a topographic map feature by feature

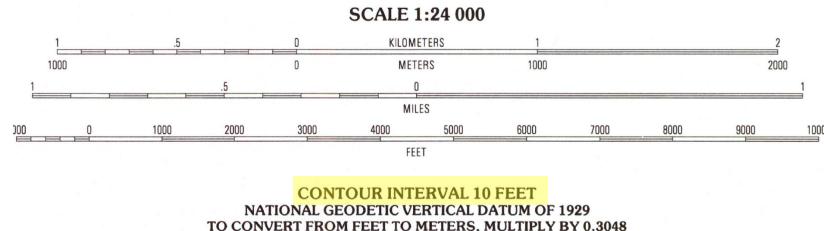
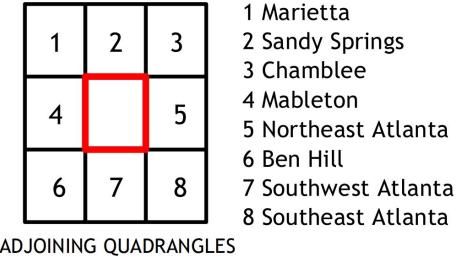
Topographic Maps - display terrain on a 2-D surface using contour lines and other symbols:

USGS Topographic Map Symbols

- You can download almost every topographic map ever created here, which is great for practice (make sure you download a recent version)

Quadrangle - 4-sided topographic maps that vary between 7.5 x 7.5 minutes to 60 x 60 minutes in size

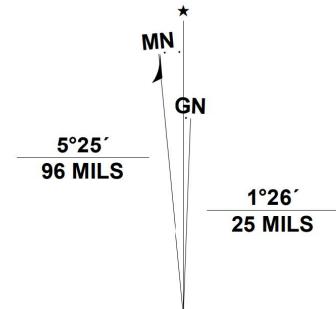
- A **minute (')** is 1/60 of a degree of latitude or longitude, and a **second (")** is 1/60 of a minute



Topic 2: Topographic Map Features

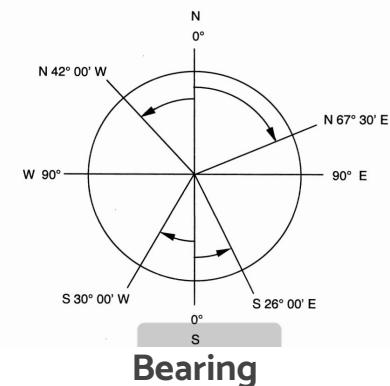
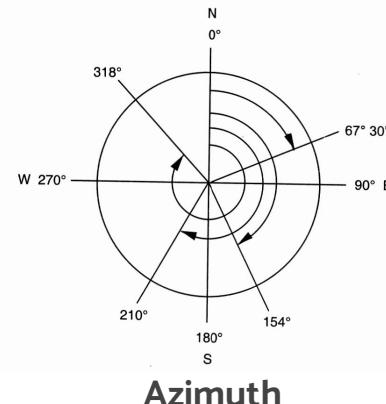
Adjacent Quadrangles:

- Found at the bottom of the map, indicates quadrangles W, E, S, etc.

Scale:


- 1:24,000 is a standard scale for 7.5' quadrangles
 - 1 inch on map = 24,000 inches in reality = 2000 ft
 - This scale is important when asked to find the approximate distance between two places
 - Watch out! Certain maps, like Alaska quadrangles use a different scale, but you should be okay if you reference your measurements to the bars provided

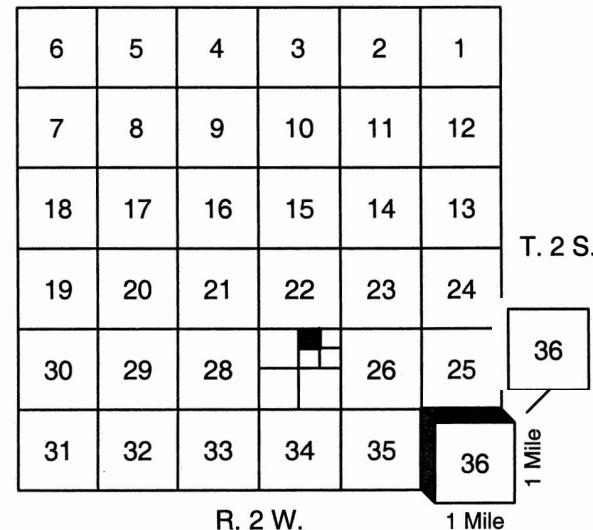
Topic 2: Topographic Map Features



Magnetic Declination:

- Describes the difference between magnetic north (MN) – what a compass would point to – and true geographic north (GN)
- Convection currents and certain geological features slightly shift the Earth's magnetic field from its rotational axis

Azimuth/Bearing:

- Time to take out your protractor!
- Azimuth is expressed as a value between 0 and 359 degrees, measured clockwise from North
- Bearing is expressed as a value between 0 and 90 degrees, measured either East or West from North or South

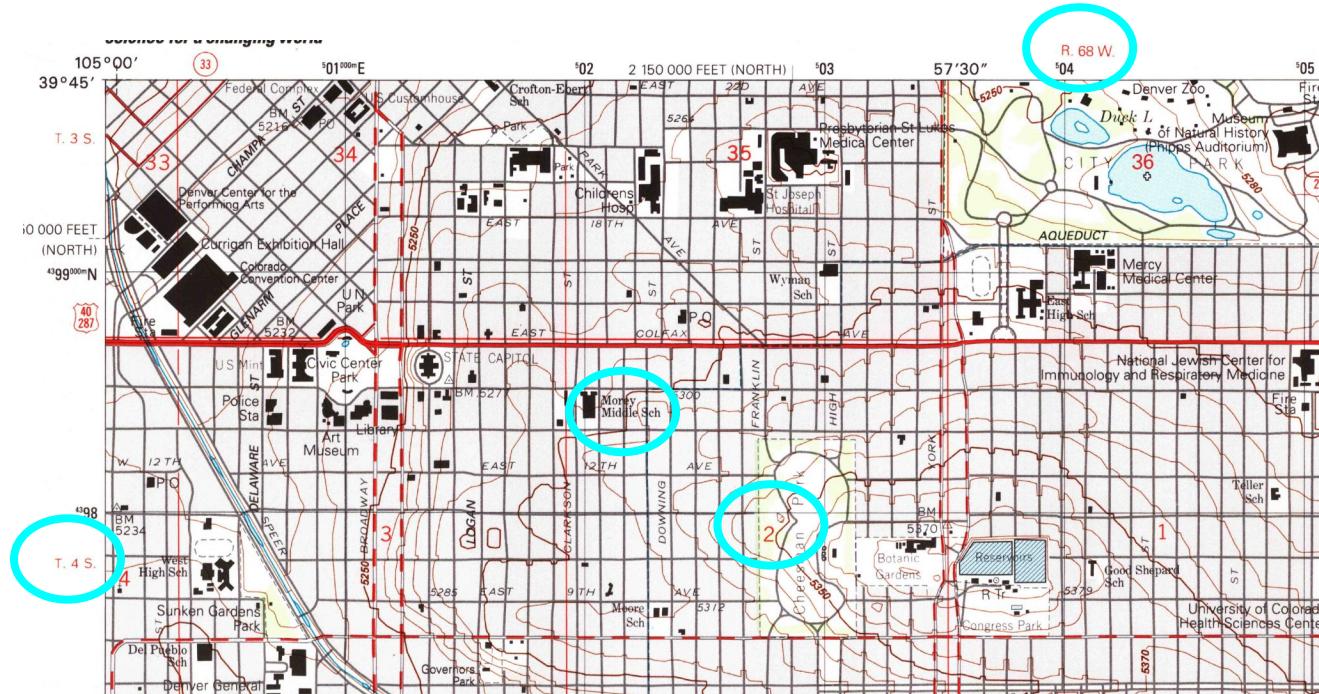


Topic 3: PLSS System

- Created by Thomas Jefferson in 1785 and stands for **Public Land Survey System**
- Useful for locating specific features within a map
- Divides “townships” into 36 1 x 1 mi squares
- Each square is further divided
- The filled in black square would be designated as:

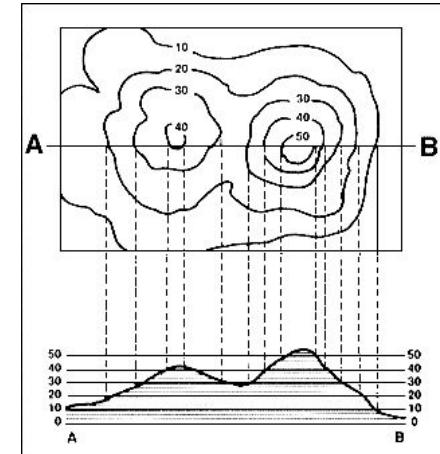
NW 1/4 , NE 1/4, Sec 27, T 2 S, R 2 W

Notice how the notation runs from smallest square to largest square



1 Section = 640 Acres

Question 1: PLSS System


Describe the location of Morey Middle School using PLSS sectioning notation.

Answer: NW $\frac{1}{4}$, NW $\frac{1}{4}$, Sec 2, T 4 S, R 68 W

Topic 4: Drawing a Topographic Profile

- Almost guaranteed to be asked on a Road Scholar Exam
- **Topographic Profile:** a side view of a topographic map segment that highlights its changes in elevation
- **Steps:**
 1. Line the edge of a piece of scrap paper along two points A and B
 2. Every time the edge intersects with a contour line, mark that spot with the written elevation
 3. Translate the marks over to the given graph with position along the horizontal axis and elevation on the vertical axis
 4. Roughly connect the points to draw the shape of the land segment
 5. Draw in the symbols of any notable geologic features like rivers or roads (the symbols can be found [here](#))

Topic 5: Highways

- Make sure you're familiar with the types of highways and their symbols
 - **Turnpike vs. Freeway** - a turnpike charges tolls while a freeway is free
 - **State Route** - maintained by a singular state
 - **Interstate** - crosses state borders (ex: I-95)
- A good way to practice!
 - While riding in the back of your parents car, try observing the signs and mapping out your path on a physical highway map
 - What is the name of the highway you're currently on? What exits do you have to take to get to your destination?

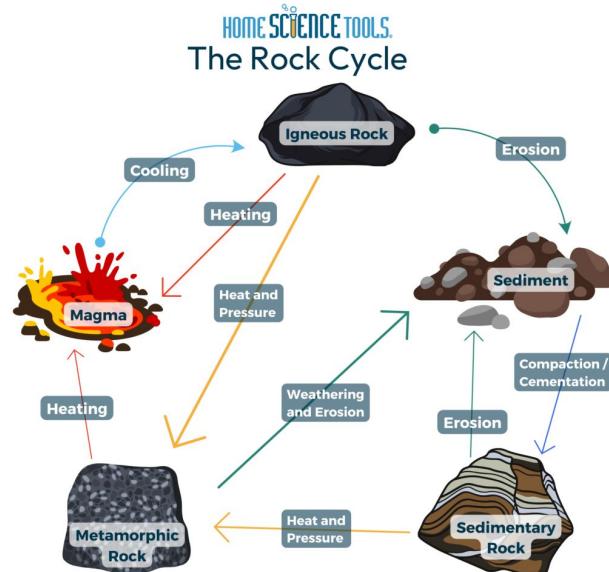
Figure 2D-3. Route Signs

Interstate Route Sign
M1-1

Off-Interstate Business Route Sign
M1-2 (Loop), M1-3 (Spur)

U.S. Route Sign
M1-4

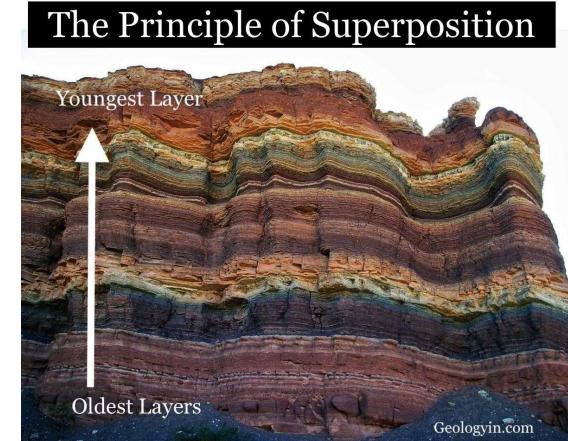
State Route Sign
M1-5


County Route Sign
M1-6

National Forest
Forest Route Sign
M1-7

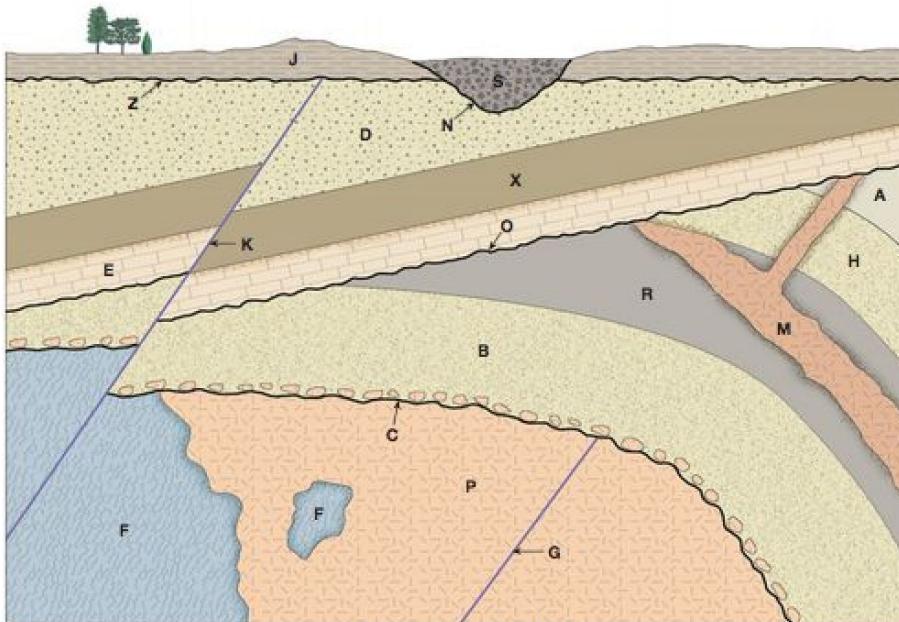
Topic 6: Lithology

- **The Rock Cycle:**
 - Most likely, questions won't be as simple as, "How does a rock transition from [state] to [state]?"
 - Must investigate into the individual processes and ask questions like the following to guide research:
 - "How does erosion occur?"
 - "In what settings does a rock experience heat and pressure?"
- Create a **list of common rocks and minerals** for your notes for ID questions. Include:
 - A picture
 - Characteristics like color, texture, luster, hardness, etc.
 - Unique features



Topic 7: Law of Superposition

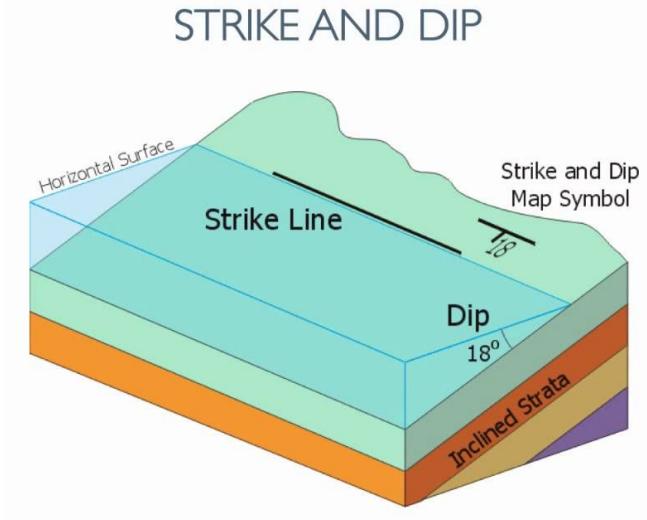
- Concerns **stratigraphy**, a field of study that describes rock successions
- States that the oldest rock beds are positioned at the bottom and the youngest ones are at the top of a cross-section of the ground
- Intuitively, this makes sense


- **Exceptions:**
 - When strata is folded or faulted, the arrangement of layers can be disrupted
 - Dikes, such as slivers of igneous rock, can insert themselves into the layering

Question 2: Law of Superposition

Extremely common question (pulled from Test Exchange):

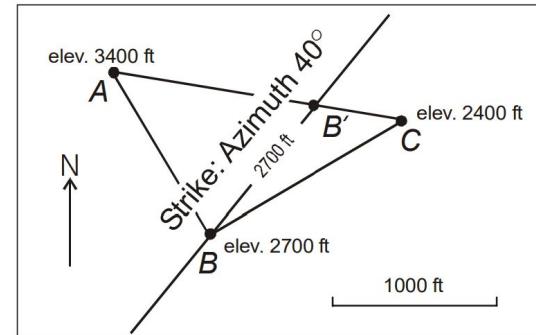
Using their letters, put the geologic features in order from oldest to youngest.



Answer:

F, P, G, C, B, R, H, A, M, O, E, X, D, K, Z,
J, N, S

Topic 8: Three-Point Problem


- You will be given three points on a map at different elevations and must find the strike and dip of the outcrop from that information
- **Strike:** the compass bearing of the strike line, or the line perpendicular to the slope of the land
- **Dip:** the angle at which an outcrop slopes downwards, measured from the horizontal

Topic 8: Three-Point Problem

- **Steps:**

1. Find where the contour line running through point B (A > B > C) intersects the line connecting A and C
 - a. If not given the contour line, you can find this intersection point by analyzing elevations:
 - b. The elevation of B is 300 ft. above C and 700 ft. below A, so B' will lie 30% of the distance from C to A
 - c. The compass bearing of this line is **strike**

Figure 2. Map showing the location of the line of strike from data in Figure 1.

Topic 2: Three-Point Problem

- **Steps:**

1. Draw a line perpendicular to the strike line outside of the outcrop
2. Mirror AB'C on the other side of the line you just drew, creating a kind of trapezoid
3. Measure the angle between the mirrored AB'C and your drawn line. This is the **dip**

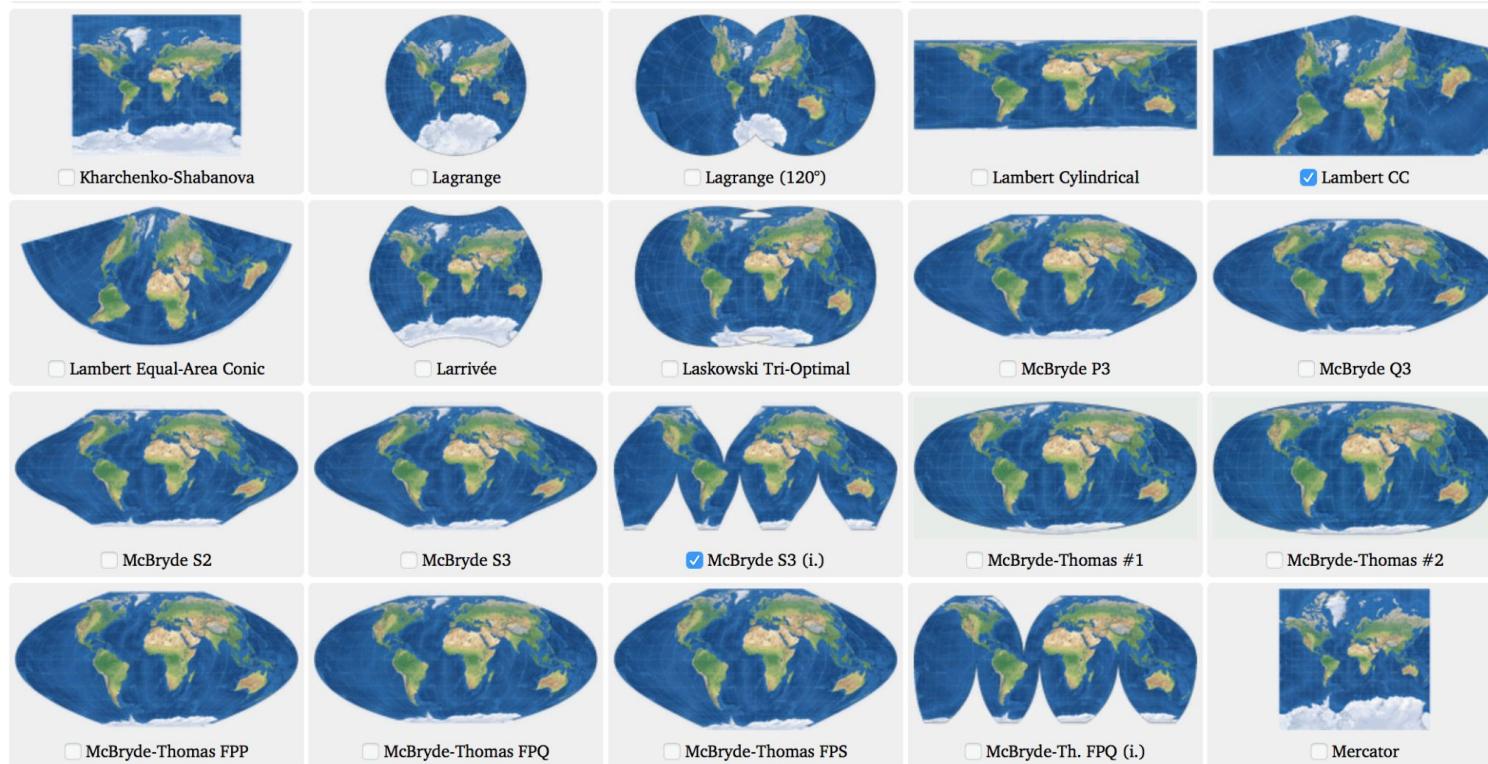
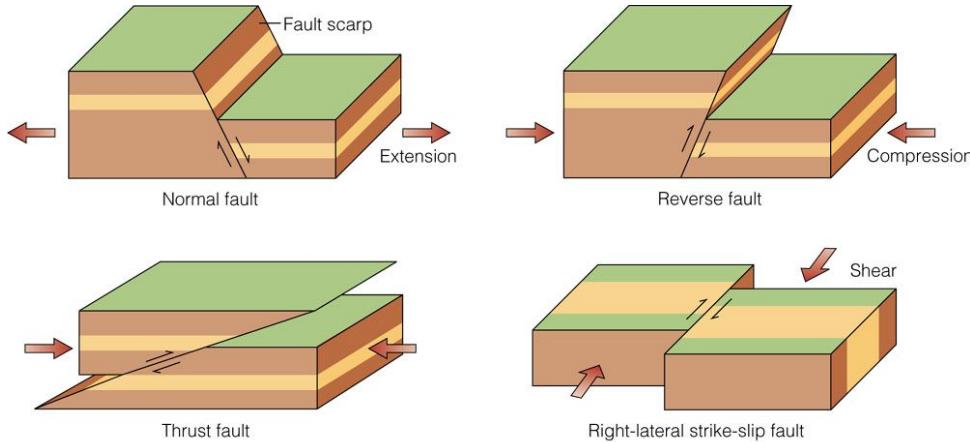
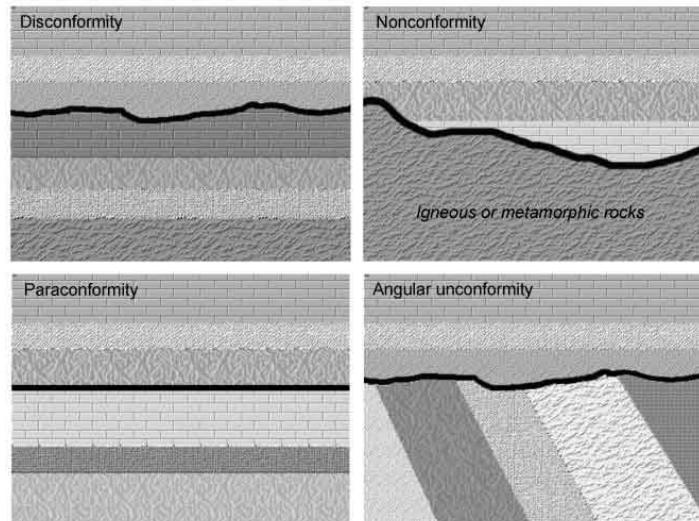




Figure 3. Map and cross-section showing true dip from data in Figure 1 (after Davis and Reynolds, 1996, Fig. G.7)

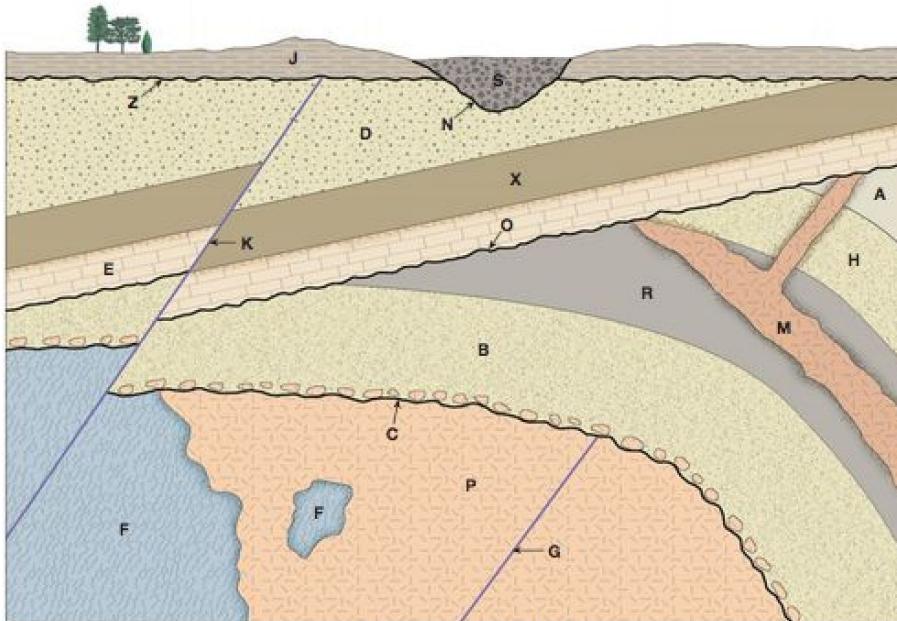
Topic 9: Map Projections

Topic 10: Faults & Unconformities


© 2006 Brooks/Cole - Thomson

Fault Types:

There are more than are listed here -> always make sure that you are digging deeper


Unconformities:

Any contact between strata of different ages

Question 3: Unconformities

Now knowing what unconformities are, what type are letters C and O?

Answer:

C is a nonconformity – it lies on top of igneous rock

O is an angular unconformity – the strata below it angle towards it

Final Question

How many degrees of longitude wide is one Universal Tranverse Mercator zone?

- a. 3
- b. 4
- c. 5
- d. 6

Answer: D, Universal Transverse Mercator (UTM) is a system used to assign coordinates to different locations on Earth, just like latitude/longitude. It divides the Earth into 60 zones, each 6 degrees wide in longitude (makes sense, $60^{\circ} \times 6 = 360$ degrees)

Tips from a Veteran

- Keep your binder organized with a bookmarking system
 - While you have a binder of notes that you can bring, your binder has no use if you can't find anything in it
- Avoid printing out entire Wikipedia pages
- Make a research schedule – assign specific topics for each partner to research and set deadlines to make sure you cover all material by the competition date
- Allot a month or more to just taking practice tests and supplementing your notes with any additional topics that you encounter

Additional Resources

Geologic Mapping Notes

Road Scholar Website

Geologic Mapping Website

THANKS!

